Researchers at University of Bonn, Germany, have succeeded in directly generating brain stem cells from the connective tissue cells of mice. These stem cells can reproduce and be converted into various types of brain cells. To date, only reprogramming in brain cells that were already fully developed or which had only a limited ability to divide was possible. The new reprogramming method which, enables derivation of brain stem cells that are still immature and able to undergo practically unlimited division to be extracted from conventional body cells. The results have now been published in the current edition of the journal Cell Stem Cell.
Since Prof. Shinya Yamanaka and his team produced stem cells from the connective tissue cells of mice for the first time in 2006; these cells can differentiate into all types of body cells. These induced pluripotent stem cells (iPS cells) develop via reprogramming into a type of embryonic stage. This result made the scientific community sit up and take notice. If as many stem cells as desired can be produced from conventional body cells, this holds great potential for medical developments and drug research. Team of scientists led by Dr. Frank Edenhofer from the University of Bonn has proven a variant for this method in a mouse model. Study team also involved epileptologists and the Institute of Human Genetics of the University of Bonn, led by Dr. Markus Nöthen, who is also a member of the German Center for Neurodegenerative Diseases.
Edenhofer and his co-workers Marc Thier, Philipp Wörsdörfer and Yenal B. Lakes used connective tissue cells from mice as a starting material. Same as Prof. Yamanaka, the group initiated the conversion with a combination of four genes. However the team deliberately target the production of neural stem cells or brain stem cells, not pluripotent iPS multipurpose cells. These cells are known as somatic or adult stem cells, which can develop into the cells typical of the nervous system, neurons, oligodendrocytes and astrocytes.
The gene “Oct4” is a crucial control factor. First, it prepares the connective tissue cell for reprogramming, later, however, Oct4 appears to prevent destabilized cells from becoming brain stem cells. While this factor is switched on during reprogramming of iPS cells over a longer period of time, the Bonn researchers activate the factor with special techniques for only a few days. Findings report that, this molecular switch is toggled over a limited period of time, the brain stem cells, which the group refer as induced neural stem cells (iNS cells), can be reached directly. Oct4 activates the process, destabilizes the cells and clears them for the direct reprogramming. However, further studies are required to analyze the exact mechanism of the cellular conversion.
Hence, the researcher have thus found a new way to reprogram cells, which is considerably faster and also safer in comparison to the iPS cells and embryonic stem cells. Since the protocol cut down on the reprogramming of the cells via the embryonic stage, the current method is about two to three times faster than the method used to produce iPS cells by Prof. Yamanaka. Thus the work involved and the costs are also much lower. In addition, the novel Bonn method is associated with a dramatically lower risk of tumors. As compared to other approaches, the current method stands out due to the production of neural cells that can be multiplied to a nearly unlimited degree.
Low risk of tumor and unlimited self renewal
A low risk of tumor formation is important because in the distant future, neural cells will replace defective cells of the nervous system. A vision of the various international scientific teams is to eventually create adult stem cells for example from skin or hair root cells, differentiate these further for therapeutic purposes, and then implant them in damaged areas. However, the scientists have a rather urgent need today for a simple way to obtain brain stem cells from the patient to use them to study various neurodegenerative diseases and test drugs in a Petri dish. The novel method could form the basis for providing practically unlimited quantities of the patient’s own cells. The current study was initially conducted on mice. Bonn’s research team is now looking forward to validate the findings in humans.
Thier M, Wörsdörfer P, Lakes YB, Gorris R, Herms S, Opitz T, Seiferling D, Quandel T, Hoffmann P, Nöthen MM, Brüstle O, & Edenhofer F (2012). Direct conversion of fibroblasts into stably expandable neural stem cells. Cell stem cell, 10 (4), 473-9 PMID: 22445518
Damian Bathory says
The initial results are incomplete, but do continue the study. There’s a lot riding on it. This could potentially be a way to make the lives of patients and the live in care sussex that look after them a lot easier.